Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recent and new results on octonionic Bergman and Szegö kernels (2010.05100v1)

Published 10 Oct 2020 in math.CV and math.FA

Abstract: Very recently one has started to study Bergman and Szeg\"o kernels in the setting of octonionic monogenic functions. In particular, explicit formulas for the Bergman kernel for the octonionic unit ball and for the octonionic right half-space as well as a formula for the Szeg\"o kernel for the octonionic unit ball have been established. In this paper we extend this line of investigation by developing explicit formulas for the Szeg\"o kernel of strip domains of the form ${\cal{S}} := {z \in \mathbb{O} \mid 0 < \Re(z) < d}$ from which we derive by a limit argument considering $d \to \infty$ the Szeg\"o kernel of the octonionic right half-space. Additionally, we set up formulas for the Bergman kernel of such strip domains and relate both kernels with each other. In fact, these kernel functions can be expressed in terms of one-fold periodic octonionic monogenic generalizations of the cosecant function and the cotangent function, respectively.

Summary

We haven't generated a summary for this paper yet.