Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak Greenberg's generalized conjecture for imaginary quadratic fields (2010.04988v1)

Published 10 Oct 2020 in math.NT

Abstract: Let $p$ be an odd prime number and $k$ an imaginary quadratic field in which $p$ splits. In this paper, we consider a weak form of Greenberg's generalized conjecture for $p$ and $k$, which states that the non-trivial Iwasawa module of the maximal multiple $\mathbb{Z}_p$-extension field over $k$ has a non-trivial pseudo-null submodule. We prove this conjecture for $p$ and $k$ under the assumption that the Iwasawa $\lambda$-invariant for a certain $\mathbb{Z}_p$-extension over a finite abelian extension of $k$ vanishes and that the characteristic ideal of the Iwasawa module associated to the cyclotomic $\mathbb{Z}_p$-extension over $k$ has a square-free generator.

Summary

We haven't generated a summary for this paper yet.