Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MS-Ranker: Accumulating Evidence from Potentially Correct Candidates for Answer Selection (2010.04970v1)

Published 10 Oct 2020 in cs.CL

Abstract: As conventional answer selection (AS) methods generally match the question with each candidate answer independently, they suffer from the lack of matching information between the question and the candidate. To address this problem, we propose a novel reinforcement learning (RL) based multi-step ranking model, named MS-Ranker, which accumulates information from potentially correct candidate answers as extra evidence for matching the question with a candidate. In specific, we explicitly consider the potential correctness of candidates and update the evidence with a gating mechanism. Moreover, as we use a listwise ranking reward, our model learns to pay more attention to the overall performance. Experiments on two benchmarks, namely WikiQA and SemEval-2016 CQA, show that our model significantly outperforms existing methods that do not rely on external resources.

Citations (1)

Summary

We haven't generated a summary for this paper yet.