Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Intrinsic and Extrinsic Explainability: The Relevance of Understanding Neural Networks for Human-Robot Interaction (2010.04602v1)

Published 9 Oct 2020 in cs.RO and cs.AI

Abstract: Explainable artificial intelligence (XAI) can help foster trust in and acceptance of intelligent and autonomous systems. Moreover, understanding the motivation for an agent's behavior results in better and more successful collaborations between robots and humans. However, not only can humans benefit from a robot's explanation but the robot itself can also benefit from explanations given to him. Currently, most attention is paid to explaining deep neural networks and black-box models. However, a lot of these approaches are not applicable to humanoid robots. Therefore, in this position paper, current problems with adapting XAI methods to explainable neurorobotics are described. Furthermore, NICO, an open-source humanoid robot platform, is introduced and how the interaction of intrinsic explanations by the robot itself and extrinsic explanations provided by the environment enable efficient robotic behavior.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tom Weber (8 papers)
  2. Stefan Wermter (157 papers)
Citations (4)