Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covariance Kernel of Linear Spectral Statistics for Half-Heavy tailed Wigner Matrices (2010.04219v3)

Published 8 Oct 2020 in math.PR

Abstract: In this paper we analyze the covariance kernel of the Gaussian process that arises as the limit of fluctuations of linear spectral statistics for Wigner matrices with a few moments. More precisely, the process we study here corresponds to Hermitian matrices with independent entries that have $\alpha$ moments for $2<\alpha < 4$. We obtain a closed form $\alpha$-dependent expression for the covariance of the limiting process resulting from fluctuations of the Stieltjes transform by explicitly integrating the known double Laplace transform integral formula obtained in the literature. We then express the covariance as an integral kernel acting on bounded continuous test functions. The resulting formulation allows us to offer a heuristic interpretation of the impact the typical large eigenvalues of this matrix ensemble have on the covariance structure.

Summary

We haven't generated a summary for this paper yet.