Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Affine-Invariant Robust Training (2010.04216v1)

Published 8 Oct 2020 in cs.LG, cs.NE, and stat.ML

Abstract: The field of adversarial robustness has attracted significant attention in machine learning. Contrary to the common approach of training models that are accurate in average case, it aims at training models that are accurate for worst case inputs, hence it yields more robust and reliable models. Put differently, it tries to prevent an adversary from fooling a model. The study of adversarial robustness is largely focused on $\ell_p-$bounded adversarial perturbations, i.e. modifications of the inputs, bounded in some $\ell_p$ norm. Nevertheless, it has been shown that state-of-the-art models are also vulnerable to other more natural perturbations such as affine transformations, which were already considered in machine learning within data augmentation. This project reviews previous work in spatial robustness methods and proposes evolution strategies as zeroth order optimization algorithms to find the worst affine transforms for each input. The proposed method effectively yields robust models and allows introducing non-parametric adversarial perturbations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Oriol Barbany Mayor (3 papers)

Summary

We haven't generated a summary for this paper yet.