Analyzing the Weyl construction for dynamical Cartan subalgebras (2010.04137v1)
Abstract: When the reduced twisted $C*$-algebra $C*_r(\mathcal{G}, c)$ of a non-principal groupoid $\mathcal{G}$ admits a Cartan subalgebra, Renault's work on Cartan subalgebras implies the existence of another groupoid description of $C*_r(\mathcal{G}, c)$. In an earlier paper, joint with Reznikoff and Wright, we identified situations where such a Cartan subalgebra arises from a subgroupoid $\mathcal{S}$ of $\mathcal{G}$. In this paper, we study the relationship between the original groupoids $\mathcal{S}, \mathcal{G}$ and the Weyl groupoid and twist associated to the Cartan pair. We first identify the spectrum $\mathfrak{B}$ of the Cartan subalgebra $C*_r(\mathcal{S}, c)$. We then show that the quotient groupoid $\mathcal{G}/\mathcal{S}$ acts on $\mathfrak{B}$, and that the corresponding action groupoid is exactly the Weyl groupoid of the Cartan pair. Lastly we show that, if the quotient map $\mathcal{G}\to\mathcal{G}/\mathcal{S}$ admits a continuous section, then the Weyl twist is also given by an explicit continuous $2$-cocycle on $\mathcal{G}/\mathcal{S} \ltimes \mathfrak{B}$.