Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Mixed-Precision RISC-V Processor for Extreme-Edge DNN Inference (2010.04073v1)

Published 8 Oct 2020 in cs.AR

Abstract: Low bit-width Quantized Neural Networks (QNNs) enable deployment of complex machine learning models on constrained devices such as microcontrollers (MCUs) by reducing their memory footprint. Fine-grained asymmetric quantization (i.e., different bit-widths assigned to weights and activations on a tensor-by-tensor basis) is a particularly interesting scheme to maximize accuracy under a tight memory constraint. However, the lack of sub-byte instruction set architecture (ISA) support in SoA microprocessors makes it hard to fully exploit this extreme quantization paradigm in embedded MCUs. Support for sub-byte and asymmetric QNNs would require many precision formats and an exorbitant amount of opcode space. In this work, we attack this problem with status-based SIMD instructions: rather than encoding precision explicitly, each operand's precision is set dynamically in a core status register. We propose a novel RISC-V ISA core MPIC (Mixed Precision Inference Core) based on the open-source RI5CY core. Our approach enables full support for mixed-precision QNN inference with different combinations of operands at 16-, 8-, 4- and 2-bit precision, without adding any extra opcode or increasing the complexity of the decode stage. Our results show that MPIC improves both performance and energy efficiency by a factor of 1.1-4.9x when compared to software-based mixed-precision on RI5CY; with respect to commercially available Cortex-M4 and M7 microcontrollers, it delivers 3.6-11.7x better performance and 41-155x higher efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Gianmarco Ottavi (11 papers)
  2. Angelo Garofalo (33 papers)
  3. Giuseppe Tagliavini (21 papers)
  4. Francesco Conti (67 papers)
  5. Luca Benini (363 papers)
  6. Davide Rossi (69 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.