Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative predictions of photo-emission dynamics in metal halide perovskites via machine learning (2010.03702v1)

Published 8 Oct 2020 in cond-mat.mtrl-sci and physics.app-ph

Abstract: Metal halide perovskite (MHP) optoelectronics may become a viable alternative to standard Si-based technologies, but the current lack of long-term stability precludes their commercial adoption. Exposure to standard operational stressors (light, temperature, bias, oxygen, and water) often instigate optical and electronic dynamics, calling for a systematic investigation into MHP photophysical processes and the development of quantitative models for their prediction. We resolve the moisture-driven light emission dynamics for both methylammonium lead tribromide and triiodide thin films as a function of relative humidity (rH). With the humidity and photoluminescence time series, we train recurrent neural networks and establish their ability to quantitatively predict the path of future light emission with <11% error over 12 hours. Together, our in situ rH-PL measurements and machine learning forecasting models provide a framework for the rational design of future stable perovskite devices and, thus, a faster transition towards commercial applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.