Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge-Based Learning of Nonlinear Dynamics and Chaos (2010.03415v4)

Published 7 Oct 2020 in nlin.CD and cs.LG

Abstract: Extracting predictive models from nonlinear systems is a central task in scientific machine learning. One key problem is the reconciliation between modern data-driven approaches and first principles. Despite rapid advances in machine learning techniques, embedding domain knowledge into data-driven models remains a challenge. In this work, we present a universal learning framework for extracting predictive models from nonlinear systems based on observations. Our framework can readily incorporate first principle knowledge because it naturally models nonlinear systems as continuous-time systems. This both improves the extracted models' extrapolation power and reduces the amount of data needed for training. In addition, our framework has the advantages of robustness to observational noise and applicability to irregularly sampled data. We demonstrate the effectiveness of our scheme by learning predictive models for a wide variety of systems including a stiff Van der Pol oscillator, the Lorenz system, and the Kuramoto-Sivashinsky equation. For the Lorenz system, different types of domain knowledge are incorporated to demonstrate the strength of knowledge embedding in data-driven system identification.

Citations (29)

Summary

We haven't generated a summary for this paper yet.