Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Legal Sentiment Analysis and Opinion Mining (LSAOM): Assimilating Advances in Autonomous AI Legal Reasoning (2010.02726v1)

Published 2 Oct 2020 in cs.CY and cs.AI

Abstract: An expanding field of substantive interest for the theory of the law and the practice-of-law entails Legal Sentiment Analysis and Opinion Mining (LSAOM), consisting of two often intertwined phenomena and actions underlying legal discussions and narratives: (1) Sentiment Analysis (SA) for the detection of expressed or implied sentiment about a legal matter within the context of a legal milieu, and (2) Opinion Mining (OM) for the identification and illumination of explicit or implicit opinion accompaniments immersed within legal discourse. Efforts to undertake LSAOM have historically been performed by human hand and cognition, and only thinly aided in more recent times by the use of computer-based approaches. Advances in AI involving especially NLP and Machine Learning (ML) are increasingly bolstering how automation can systematically perform either or both of Sentiment Analysis and Opinion Mining, all of which is being inexorably carried over into engagement within a legal context for improving LSAOM capabilities. This research paper examines the evolving infusion of AI into Legal Sentiment Analysis and Opinion Mining and proposes an alignment with the Levels of Autonomy (LoA) of AI Legal Reasoning (AILR), plus provides additional insights regarding AI LSAOM in its mechanizations and potential impact to the study of law and the practicing of law.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Lance Eliot (11 papers)
Citations (3)