Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subspace Embeddings Under Nonlinear Transformations (2010.02264v1)

Published 5 Oct 2020 in cs.LG, cs.DS, and stat.ML

Abstract: We consider low-distortion embeddings for subspaces under \emph{entrywise nonlinear transformations}. In particular we seek embeddings that preserve the norm of all vectors in a space $S = {y: y = f(x)\text{ for }x \in Z}$, where $Z$ is a $k$-dimensional subspace of $\mathbb{R}n$ and $f(x)$ is a nonlinear activation function applied entrywise to $x$. When $f$ is the identity, and so $S$ is just a $k$-dimensional subspace, it is known that, with high probability, a random embedding into $O(k/\epsilon2)$ dimensions preserves the norm of all $y \in S$ up to $(1\pm \epsilon)$ relative error. Such embeddings are known as \emph{subspace embeddings}, and have found widespread use in compressed sensing and approximation algorithms. We give the first low-distortion embeddings for a wide class of nonlinear functions $f$. In particular, we give additive $\epsilon$ error embeddings into $O(\frac{k\log (n/\epsilon)}{\epsilon2})$ dimensions for a class of nonlinearities that includes the popular Sigmoid SoftPlus, and Gaussian functions. We strengthen this result to give relative error embeddings under some further restrictions, which are satisfied e.g., by the Tanh, SoftSign, Exponential Linear Unit, and many other `soft' step functions and rectifying units. Understanding embeddings for subspaces under nonlinear transformations is a key step towards extending random sketching and compressing sensing techniques for linear problems to nonlinear ones. We discuss example applications of our results to improved bounds for compressed sensing via generative neural networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.