Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic resetting of active Brownian particles with Lorentz force (2010.02103v1)

Published 5 Oct 2020 in cond-mat.stat-mech and cond-mat.soft

Abstract: The equilibrium properties of a system of passive diffusing particles in an external magnetic field are unaffected by the Lorentz force. In contrast, active Brownian particles exhibit steady-state phenomena that depend on both the strength and the polarity of the applied magnetic field. The intriguing effects of the Lorentz force, however, can only be observed when out-of-equilibrium density gradients are maintained in the system. To this end, we use the method of stochastic resetting on active Brownian particles in two dimensions by resetting them to the line $x=0$ at a constant rate and periodicity in the $y$ direction. Under stochastic resetting, an active system settles into a nontrivial stationary state which is characterized by an inhomogeneous density distribution, polarization and bulk fluxes perpendicular to the density gradients. We show that whereas for a uniform magnetic field the properties of the stationary state of the active system can be obtained from its passive counterpart, novel features emerge in the case of an inhomogeneous magnetic field which have no counterpart in passive systems. In particular, there exists an activity-dependent threshold rate such that for smaller resetting rates, the density distribution of active particles becomes non-monotonic. We also study the mean first-passage time to the $x$ axis and find a surprising result: it takes an active particle more time to reach the target from any given point for the case when the magnetic field increases away from the axis. The theoretical predictions are validated using Brownian dynamics simulations.

Summary

We haven't generated a summary for this paper yet.