Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Paragraph-level Commonsense Transformers with Recurrent Memory (2010.01486v2)

Published 4 Oct 2020 in cs.CL and cs.LG

Abstract: Human understanding of narrative texts requires making commonsense inferences beyond what is stated explicitly in the text. A recent model, COMET, can generate such implicit commonsense inferences along several dimensions such as pre- and post-conditions, motivations, and mental states of the participants. However, COMET was trained on commonsense inferences of short phrases, and is therefore discourse-agnostic. When presented with each sentence of a multi-sentence narrative, it might generate inferences that are inconsistent with the rest of the narrative. We present the task of discourse-aware commonsense inference. Given a sentence within a narrative, the goal is to generate commonsense inferences along predefined dimensions, while maintaining coherence with the rest of the narrative. Such large-scale paragraph-level annotation is hard to get and costly, so we use available sentence-level annotations to efficiently and automatically construct a distantly supervised corpus. Using this corpus, we train PARA-COMET, a discourse-aware model that incorporates paragraph-level information to generate coherent commonsense inferences from narratives. PARA-COMET captures both semantic knowledge pertaining to prior world knowledge, and episodic knowledge involving how current events relate to prior and future events in a narrative. Our results show that PARA-COMET outperforms the sentence-level baselines, particularly in generating inferences that are both coherent and novel.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Saadia Gabriel (23 papers)
  2. Chandra Bhagavatula (46 papers)
  3. Vered Shwartz (49 papers)
  4. Ronan Le Bras (56 papers)
  5. Maxwell Forbes (14 papers)
  6. Yejin Choi (287 papers)
Citations (38)