Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Insights on Learning Rules for Hopfield Networks: Memory and Objective Function Minimisation (2010.01472v1)

Published 4 Oct 2020 in cs.NE and q-bio.NC

Abstract: Hopfield neural networks are a possible basis for modelling associative memory in living organisms. After summarising previous studies in the field, we take a new look at learning rules, exhibiting them as descent-type algorithms for various cost functions. We also propose several new cost functions suitable for learning. We discuss the role of biases (the external inputs) in the learning process in Hopfield networks. Furthermore, we apply Newtons method for learning memories, and experimentally compare the performances of various learning rules. Finally, to add to the debate whether allowing connections of a neuron to itself enhances memory capacity, we numerically investigate the effects of self coupling. Keywords: Hopfield Networks, associative memory, content addressable memory, learning rules, gradient descent, attractor networks

Citations (9)

Summary

We haven't generated a summary for this paper yet.