Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mean-Variance Efficient Reinforcement Learning with Applications to Dynamic Financial Investment (2010.01404v4)

Published 3 Oct 2020 in cs.LG and stat.ML

Abstract: This study investigates the mean-variance (MV) trade-off in reinforcement learning (RL), an instance of the sequential decision-making under uncertainty. Our objective is to obtain MV-efficient policies whose means and variances are located on the Pareto efficient frontier with respect to the MV trade-off; under the condition, any increase in the expected reward would necessitate a corresponding increase in variance, and vice versa. To this end, we propose a method that trains our policy to maximize the expected quadratic utility, defined as a weighted sum of the first and second moments of the rewards obtained through our policy. We subsequently demonstrate that the maximizer indeed qualifies as an MV-efficient policy. Previous studies that employed constrained optimization to address the MV trade-off have encountered computational challenges. However, our approach is more computationally efficient as it eliminates the need for gradient estimation of variance, a contributing factor to the double sampling issue observed in existing methodologies. Through experimentation, we validate the efficacy of our approach.

Summary

We haven't generated a summary for this paper yet.