Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the monophonic rank of a graph (2010.01365v6)

Published 3 Oct 2020 in cs.DM and cs.CC

Abstract: A set of vertices $S$ of a graph $G$ is $monophonically \ convex$ if every induced path joining two vertices of $S$ is contained in $S$. The $monophonic \ convex \ hull$ of $S$, $\langle S \rangle$, is the smallest monophonically convex set containing $S$. A set $S$ is $monophonic \ convexly \ independent$ if $v \not\in \langle S - {v} \rangle$ for every $v \in S$. The $monophonic \ rank$ of $G$ is the size of the largest monophonic convexly independent set of $G$. We present a characterization of the monophonic convexly independent sets. Using this result, we show how to determine the monophonic rank of graph classes like bipartite, cactus, triangle-free and line graphs in polynomial time. Furthermore, we show that this parameter can be computed in polynomial time for $1$-starlike graphs, $i.e.$, for split graphs, and that its determination is $NP$-complete for $k$-starlike graphs for any fixed $k \ge 2$, a subclass of chordal graphs. We also consider this problem on the graphs whose intersection graph of the maximal prime subgraphs is a tree.

Citations (3)

Summary

We haven't generated a summary for this paper yet.