Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CARLA: A Convolution Accelerator with a Reconfigurable and Low-Energy Architecture (2010.00627v1)

Published 1 Oct 2020 in cs.AR

Abstract: Convolutional Neural Networks (CNNs) have proven to be extremely accurate for image recognition, even outperforming human recognition capability. When deployed on battery-powered mobile devices, efficient computer architectures are required to enable fast and energy-efficient computation of costly convolution operations. Despite recent advances in hardware accelerator design for CNNs, two major problems have not yet been addressed effectively, particularly when the convolution layers have highly diverse structures: (1) minimizing energy-hungry off-chip DRAM data movements; (2) maximizing the utilization factor of processing resources to perform convolutions. This work thus proposes an energy-efficient architecture equipped with several optimized dataflows to support the structural diversity of modern CNNs. The proposed approach is evaluated by implementing convolutional layers of VGGNet-16 and ResNet-50. Results show that the architecture achieves a Processing Element (PE) utilization factor of 98% for the majority of 3x3 and 1x1 convolutional layers, while limiting latency to 396.9 ms and 92.7 ms when performing convolutional layers of VGGNet-16 and ResNet-50, respectively. In addition, the proposed architecture benefits from the structured sparsity in ResNet-50 to reduce the latency to 42.5 ms when half of the channels are pruned.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mehdi Ahmadi (19 papers)
  2. Shervin Vakili (4 papers)
  3. J. M. Pierre Langlois (13 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.