Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why Adversarial Interaction Creates Non-Homogeneous Patterns: A Pseudo-Reaction-Diffusion Model for Turing Instability (2010.00521v2)

Published 1 Oct 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Long after Turing's seminal Reaction-Diffusion (RD) model, the elegance of his fundamental equations alleviated much of the skepticism surrounding pattern formation. Though Turing model is a simplification and an idealization, it is one of the best-known theoretical models to explain patterns as a reminiscent of those observed in nature. Over the years, concerted efforts have been made to align theoretical models to explain patterns in real systems. The apparent difficulty in identifying the specific dynamics of the RD system makes the problem particularly challenging. Interestingly, we observe Turing-like patterns in a system of neurons with adversarial interaction. In this study, we establish the involvement of Turing instability to create such patterns. By theoretical and empirical studies, we present a pseudo-reaction-diffusion model to explain the mechanism that may underlie these phenomena. While supervised learning attains homogeneous equilibrium, this paper suggests that the introduction of an adversary helps break this homogeneity to create non-homogeneous patterns at equilibrium. Further, we prove that randomly initialized gradient descent with over-parameterization can converge exponentially fast to an $\epsilon$-stationary point even under adversarial interaction. In addition, different from sole supervision, we show that the solutions obtained under adversarial interaction are not limited to a tiny subspace around initialization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.