Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Compression of Translation Operator Tensors in FMM-FFT-Accelerated SIE Simulators via Tensor Decompositions (2010.00520v1)

Published 25 Sep 2020 in eess.SP, cs.NA, math.NA, and physics.comp-ph

Abstract: Tensor decomposition methodologies are proposed to reduce the memory requirement of translation operator tensors arising in the fast multipole method-fast Fourier transform (FMM-FFT)-accelerated surface integral equation (SIE) simulators. These methodologies leverage Tucker, hierarchical Tucker (H-Tucker), and tensor train (TT) decompositions to compress the FFT'ed translation operator tensors stored in three-dimensional (3D) and four-dimensional (4D) array formats. Extensive numerical tests are performed to demonstrate the memory saving achieved by and computational overhead introduced by these methodologies for different simulation parameters. Numerical results show that the H-Tucker-based methodology for 4D array format yields the maximum memory saving while Tucker-based methodology for 3D array format introduces the minimum computational overhead. For many practical scenarios, all methodologies yield a significant reduction in the memory requirement of translation operator tensors while imposing negligible/acceptable computational overhead.

Citations (11)

Summary

We haven't generated a summary for this paper yet.