Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High Quality Remote Sensing Image Super-Resolution Using Deep Memory Connected Network (2010.00472v1)

Published 1 Oct 2020 in eess.IV and cs.LG

Abstract: Single image super-resolution is an effective way to enhance the spatial resolution of remote sensing image, which is crucial for many applications such as target detection and image classification. However, existing methods based on the neural network usually have small receptive fields and ignore the image detail. We propose a novel method named deep memory connected network (DMCN) based on a convolutional neural network to reconstruct high-quality super-resolution images. We build local and global memory connections to combine image detail with environmental information. To further reduce parameters and ease time-consuming, we propose downsampling units, shrinking the spatial size of feature maps. We test DMCN on three remote sensing datasets with different spatial resolution. Experimental results indicate that our method yields promising improvements in both accuracy and visual performance over the current state-of-the-art.

Citations (35)

Summary

We haven't generated a summary for this paper yet.