2000 character limit reached
Intersection theorems for triangles
Published 30 Sep 2020 in math.CO and cs.DM | (2009.14560v2)
Abstract: Given a family of sets on the plane, we say that the family is intersecting if for any two sets from the family their interiors intersect. In this paper, we study intersecting families of triangles with vertices in a given set of points. In particular, we show that if a set $P$ of $n$ points is in convex position, then the largest intersecting family of triangles with vertices in $P$ contains at most $(\frac{1}{4}+o(1))\binom{n}{3}$ triangles.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.