Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FAN: Frequency Aggregation Network for Real Image Super-resolution (2009.14547v1)

Published 30 Sep 2020 in eess.IV, cs.CV, and cs.LG

Abstract: Single image super-resolution (SISR) aims to recover the high-resolution (HR) image from its low-resolution (LR) input image. With the development of deep learning, SISR has achieved great progress. However, It is still a challenge to restore the real-world LR image with complicated authentic degradations. Therefore, we propose FAN, a frequency aggregation network, to address the real-world image super-resolu-tion problem. Specifically, we extract different frequencies of the LR image and pass them to a channel attention-grouped residual dense network (CA-GRDB) individually to output corresponding feature maps. And then aggregating these residual dense feature maps adaptively to recover the HR image with enhanced details and textures. We conduct extensive experiments quantitatively and qualitatively to verify that our FAN performs well on the real image super-resolution task of AIM 2020 challenge. According to the released final results, our team SR-IM achieves the fourth place on the X4 track with PSNR of 31.1735 and SSIM of 0.8728.

Citations (24)

Summary

We haven't generated a summary for this paper yet.