Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AttendNets: Tiny Deep Image Recognition Neural Networks for the Edge via Visual Attention Condensers (2009.14385v1)

Published 30 Sep 2020 in cs.CV and cs.LG

Abstract: While significant advances in deep learning has resulted in state-of-the-art performance across a large number of complex visual perception tasks, the widespread deployment of deep neural networks for TinyML applications involving on-device, low-power image recognition remains a big challenge given the complexity of deep neural networks. In this study, we introduce AttendNets, low-precision, highly compact deep neural networks tailored for on-device image recognition. More specifically, AttendNets possess deep self-attention architectures based on visual attention condensers, which extends on the recently introduced stand-alone attention condensers to improve spatial-channel selective attention. Furthermore, AttendNets have unique machine-designed macroarchitecture and microarchitecture designs achieved via a machine-driven design exploration strategy. Experimental results on ImageNet$_{50}$ benchmark dataset for the task of on-device image recognition showed that AttendNets have significantly lower architectural and computational complexity when compared to several deep neural networks in research literature designed for efficiency while achieving highest accuracies (with the smallest AttendNet achieving $\sim$7.2% higher accuracy, while requiring $\sim$3$\times$ fewer multiply-add operations, $\sim$4.17$\times$ fewer parameters, and $\sim$16.7$\times$ lower weight memory requirements than MobileNet-V1). Based on these promising results, AttendNets illustrate the effectiveness of visual attention condensers as building blocks for enabling various on-device visual perception tasks for TinyML applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Alexander Wong (230 papers)
  2. Mahmoud Famouri (13 papers)
  3. Mohammad Javad Shafiee (56 papers)
Citations (19)