Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Semantic Parsing from the perspective of Compositionality (2009.14116v1)

Published 29 Sep 2020 in cs.CL

Abstract: Different from previous surveys in semantic parsing (Kamath and Das, 2018) and knowledge base question answering(KBQA)(Chakraborty et al., 2019; Zhu et al., 2019; Hoffner et al., 2017) we try to takes a different perspective on the study of semantic parsing. Specifically, we will focus on (a)meaning composition from syntactical structure(Partee, 1975), and (b) the ability of semantic parsers to handle lexical variation given the context of a knowledge base (KB). In the following section after an introduction of the field of semantic parsing and its uses in KBQA, we will describe meaning representation using grammar formalism CCG (Steedman, 1996). We will discuss semantic composition using formal languages in Section 2. In section 3 we will consider systems that uses formal languages e.g. $\lambda$-calculus (Steedman, 1996), $\lambda$-DCS (Liang, 2013). Section 4 and 5 consider semantic parser using structured-language for logical form. Section 6 is on different benchmark datasets ComplexQuestions (Bao et al.,2016) and GraphQuestions (Su et al., 2016) that can be used to evaluate semantic parser on their ability to answer complex questions that are highly compositional in nature.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Pawan Kumar (173 papers)
  2. Srikanta Bedathur (41 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.