On the Necessity and Sufficiency of the Zames-Falb Multipliers for Bounded Operators
Abstract: This paper analyzes the robust feedback stability of a single-input-single-output stable linear time-invariant (LTI) system against four different classes of nonlinear systems using the Zames-Falb multipliers. The contribution is fourfold. Firstly, we present a generalised S-procedure lossless theorem that involves a countably infinite number of quadratic forms. Secondly, we identify a class of uncertain systems over which the robust feedback stability implies the existence of an appropriate Zames-Falb multiplier based on the generalised S-procedure lossless theorem. Meanwhile, we show that the existence of such a Zames-Falb multiplier is sufficient for the robust feedback stability over a smaller class of uncertain systems. Thirdly, when restricted to be static (a.k.a. memoryless), the second class of systems coincides with the class of sloped-restricted monotone nonlinearities, and the classical result of using the Zames-Falb multipliers to ensure feedback stability is recovered. Lastly, when restricted to be LTI, the second class is demonstrated to be a subset of the third, and the existence of a Zames-Falb multiplier is shown to be sufficient but not necessary for the robust feedback stability.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.