Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Correlations of multiplicative functions in function fields (2009.13497v4)

Published 28 Sep 2020 in math.NT

Abstract: We develop an approach to study character sums, weighted by a multiplicative function $f:\mathbb{F}q[t]\to S1$, of the form \begin{equation} \sum{G\in \mathcal{M}_N}f(G)\chi(G)\xi(G), \end{equation} where $\chi$ is a Dirichlet character and $\xi$ is a short interval character over $\mathbb{F}_q[t].$ We then deduce versions of the Matom\"aki-Radziwill theorem and Tao's two-point logarithmic Elliott conjecture over function fields $\mathbb{F}_q[t]$, where $q$ is fixed. The former of these improves on work of Gorodetsky, and the latter extends the work of Sawin-Shusterman on correlations of the M\"{o}bius function for various values of $q$. Compared with the integer setting, we encounter a different phenomenon, specifically a low characteristic issue in the case that $q$ is a power of $2$. As an application of our results, we give a short proof of the function field version of a conjecture of K\'atai on classifying multiplicative functions with small increments, with the classification obtained and the proof being different from the integer case. In a companion paper, we use these results to characterize the limiting behavior of partial sums of multiplicative functions in function fields and in particular to solve a "corrected" form of the Erd\H{o}s discrepancy problem over $\mathbb{F}_q[t]$.

Summary

We haven't generated a summary for this paper yet.