Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating End-to-End Adversarial Examples for Malware Classifiers Using Explainability (2009.13243v2)

Published 28 Sep 2020 in cs.CR

Abstract: In recent years, the topic of explainable ML has been extensively researched. Up until now, this research focused on regular ML users use-cases such as debugging a ML model. This paper takes a different posture and show that adversaries can leverage explainable ML to bypass multi-feature types malware classifiers. Previous adversarial attacks against such classifiers only add new features and not modify existing ones to avoid harming the modified malware executable's functionality. Current attacks use a single algorithm that both selects which features to modify and modifies them blindly, treating all features the same. In this paper, we present a different approach. We split the adversarial example generation task into two parts: First we find the importance of all features for a specific sample using explainability algorithms, and then we conduct a feature-specific modification, feature-by-feature. In order to apply our attack in black-box scenarios, we introduce the concept of transferability of explainability, that is, applying explainability algorithms to different classifiers using different features subsets and trained on different datasets still result in a similar subset of important features. We conclude that explainability algorithms can be leveraged by adversaries and thus the advocates of training more interpretable classifiers should consider the trade-off of higher vulnerability of those classifiers to adversarial attacks.

Citations (24)

Summary

We haven't generated a summary for this paper yet.