Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Baselines for Word Alignment (2009.13116v1)

Published 28 Sep 2020 in cs.CL and cs.LG

Abstract: Word alignments identify translational correspondences between words in a parallel sentence pair and is used, for instance, to learn bilingual dictionaries, to train statistical machine translation systems , or to perform quality estimation. In most areas of natural language processing, neural network models nowadays constitute the preferred approach, a situation that might also apply to word alignment models. In this work, we study and comprehensively evaluate neural models for unsupervised word alignment for four language pairs, contrasting several variants of neural models. We show that in most settings, neural versions of the IBM-1 and hidden Markov models vastly outperform their discrete counterparts. We also analyze typical alignment errors of the baselines that our models overcome to illustrate the benefits-and the limitations-of these new models for morphologically rich languages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anh Khoa Ngo Ho (2 papers)
  2. François Yvon (49 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.