Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Proof Nets (2009.12702v1)

Published 26 Sep 2020 in cs.CL, cs.LG, and cs.LO

Abstract: Linear logic and the linear {\lambda}-calculus have a long standing tradition in the study of natural language form and meaning. Among the proof calculi of linear logic, proof nets are of particular interest, offering an attractive geometric representation of derivations that is unburdened by the bureaucratic complications of conventional prooftheoretic formats. Building on recent advances in set-theoretic learning, we propose a neural variant of proof nets based on Sinkhorn networks, which allows us to translate parsing as the problem of extracting syntactic primitives and permuting them into alignment. Our methodology induces a batch-efficient, end-to-end differentiable architecture that actualizes a formally grounded yet highly efficient neuro-symbolic parser. We test our approach on {\AE}Thel, a dataset of type-logical derivations for written Dutch, where it manages to correctly transcribe raw text sentences into proofs and terms of the linear {\lambda}-calculus with an accuracy of as high as 70%.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com