Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-individual Recognition of Emotions by a Dynamic Entropy based on Pattern Learning with EEG features (2009.12525v2)

Published 26 Sep 2020 in cs.LG and eess.SP

Abstract: Use of the electroencephalogram (EEG) and machine learning approaches to recognize emotions can facilitate affective human computer interactions. However, the type of EEG data constitutes an obstacle for cross-individual EEG feature modelling and classification. To address this issue, we propose a deep-learning framework denoted as a dynamic entropy-based pattern learning (DEPL) to abstract informative indicators pertaining to the neurophysiological features among multiple individuals. DEPL enhanced the capability of representations generated by a deep convolutional neural network by modelling the interdependencies between the cortical locations of dynamical entropy based features. The effectiveness of the DEPL has been validated with two public databases, commonly referred to as the DEAP and MAHNOB-HCI multimodal tagging databases. Specifically, the leave one subject out training and testing paradigm has been applied. Numerous experiments on EEG emotion recognition demonstrate that the proposed DEPL is superior to those traditional ML methods, and could learn between electrode dependencies w.r.t. different emotions, which is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications.

Summary

We haven't generated a summary for this paper yet.