Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sampling the eigenvalues of random orthogonal and unitary matrices

Published 24 Sep 2020 in math.NA and cs.NA | (2009.11515v2)

Abstract: We develop an efficient algorithm for sampling the eigenvalues of random matrices distributed according to the Haar measure over the orthogonal or unitary group. Our technique samples directly a factorization of the Hessenberg form of such matrices, and then computes their eigenvalues with a tailored core-chasing algorithm. This approach requires a number of floating-point operations that is quadratic in the order of the matrix being sampled, and can be adapted to other matrix groups. In particular, we explain how it can be used to sample the Haar measure over the special orthogonal and unitary groups and the conditional probability distribution obtained by requiring the determinant of the sampled matrix be a given complex number on the complex unit circle.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.