Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sample-Efficient Algorithm for Episodic Finite-Horizon MDP with Constraints (2009.11348v1)

Published 23 Sep 2020 in cs.LG, cs.AI, cs.SY, eess.SY, and stat.ML

Abstract: Constrained Markov Decision Processes (CMDPs) formalize sequential decision-making problems whose objective is to minimize a cost function while satisfying constraints on various cost functions. In this paper, we consider the setting of episodic fixed-horizon CMDPs. We propose an online algorithm which leverages the linear programming formulation of finite-horizon CMDP for repeated optimistic planning to provide a probably approximately correct (PAC) guarantee on the number of episodes needed to ensure an $\epsilon$-optimal policy, i.e., with resulting objective value within $\epsilon$ of the optimal value and satisfying the constraints within $\epsilon$-tolerance, with probability at least $1-\delta$. The number of episodes needed is shown to be of the order $\tilde{\mathcal{O}}\big(\frac{|S||A|C{2}H{2}}{\epsilon{2}}\log\frac{1}{\delta}\big)$, where $C$ is the upper bound on the number of possible successor states for a state-action pair. Therefore, if $C \ll |S|$, the number of episodes needed have a linear dependence on the state and action space sizes $|S|$ and $|A|$, respectively, and quadratic dependence on the time horizon $H$.

Citations (49)

Summary

We haven't generated a summary for this paper yet.