Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamical properties of convex cocompact actions in projective space (2009.10994v3)

Published 23 Sep 2020 in math.GT

Abstract: We give a dynamical characterization of convex cocompact group actions on properly convex domains in projective space in the sense of Danciger-Gueritaud-Kassel: we show that convex cocompactness in $\mathbb{R} \mathrm{P}d$ is equivalent to an expansion property of the group about its limit set, occuring in different Grassmannians. As an application, we give a sufficient and necessary condition for convex cocompactness for groups which are hyperbolic relative to a collection of convex cocompact subgroups. We show that convex cocompactness in this situation is equivalent to the existence of an equivariant homeomorphism from the Bowditch boundary to the quotient of the limit set of the group by the limit sets of its peripheral subgroups.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Convex projective structures on non-hyperbolic three-manifolds. Geometry & Topology, 22, 08 2015.
  2. Jean-Paul Benzécri. Sur les variétés localement affines et localement projectives. Bull. Soc. Math. France, 88:229–332, 1960.
  3. Yves Benoist. Automorphismes des cônes convexes. Invent. Math., 141(1):149–193, 2000.
  4. Yves Benoist. Convexes hyperboliques et fonctions quasisymétriques. Publ. Math. Inst. Hautes Études Sci., (97):181–237, 2003.
  5. Yves Benoist. Convexes divisibles. IV. Structure du bord en dimension 3. Invent. Math., 164(2):249–278, 2006.
  6. Yves Benoist. Convexes hyperboliques et quasiisométries. Geom. Dedicata, 122:109–134, 2006.
  7. Yves Benoist. A survey on divisible convex sets. In Geometry, analysis and topology of discrete groups, volume 6 of Adv. Lect. Math. (ALM), pages 1–18. Int. Press, Somerville, MA, 2008.
  8. Chapter iv: Projective metrics. volume 3 of Pure and Applied Mathematics, pages 105–173. Elsevier, 1953.
  9. Martin D. Bobb. Codimension-1111 Simplices in Divisible Convex Domains. arXiv e-prints, page arXiv:2001.11096, January 2020.
  10. Brian H. Bowditch. A topological characterisation of hyperbolic groups. J. Amer. Math. Soc., 11(3):643–667, 1998.
  11. B. H. Bowditch. Convergence groups and configuration spaces. In Geometric group theory down under (Canberra, 1996), pages 23–54. de Gruyter, Berlin, 1999.
  12. B. H. Bowditch. Relatively hyperbolic groups. Internat. J. Algebra Comput., 22(3):1250016, 66, 2012.
  13. Anosov representations and dominated splittings. J. Eur. Math. Soc. (JEMS), 21(11):3343–3414, 2019.
  14. Divisible convex sets with properly embedded cones. arXiv e-prints, page arXiv:2302.07177, February 2023.
  15. Suhyoung Choi. The convex real projective orbifolds with radial or totally geodesic ends: The closedness and openness of deformations. arXiv e-prints, page arXiv:1011.1060, November 2010.
  16. Convex projective generalized dehn filling. Annales scientifiques de l’École normale supérieure, 53, 11 2016.
  17. On convex projective manifolds and cusps. Adv. Math., 277:181–251, 2015.
  18. Deforming convex projective manifolds. Geom. Topol., 22(3):1349–1404, 2018.
  19. Finitude géométrique en géométrie de Hilbert. Ann. Inst. Fourier (Grenoble), 64(6):2299–2377, 2014.
  20. Convex cocompact actions in real projective geometry. arXiv e-prints, page arXiv:1704.08711, April 2017.
  21. Convex cocompactness for Coxeter groups. arXiv e-prints, page arXiv:2102.02757, February 2021.
  22. Tree-graded spaces and asymptotic cones of groups. Topology, 44(5):959–1058, 2005. With an appendix by Denis Osin and Mark Sapir.
  23. Sidney Frankel. Applications of affine geometry to geometric function theory in several complex variables. I. Convergent rescalings and intrinsic quasi-isometric structure. In Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), volume 52 of Proc. Sympos. Pure Math., pages 183–208. Amer. Math. Soc., Providence, RI, 1991.
  24. Eric M. Freden. Properties of convergence groups and spaces. Conform. Geom. Dyn., 1:13–23 (electronic), 1997.
  25. Discrete quasiconformal groups. I. Proc. London Math. Soc. (3), 55(2):331–358, 1987.
  26. William M. Goldman. Projective geometry on manifolds, 1988.
  27. M. Gromov and W. Thurston. Pinching constants for hyperbolic manifolds. Invent. Math., 89(1):1–12, 1987.
  28. Anosov representations: domains of discontinuity and applications. Invent. Math., 190(2):357–438, 2012.
  29. Mitul Islam. Rank-One Hilbert Geometries. arXiv e-prints, page arXiv:1912.13013, December 2019.
  30. Convex co-compact actions of relatively hyperbolic groups. arXiv e-prints, page arXiv:1910.08885, October 2019.
  31. Convex co-compact representations of 3-manifold groups. arXiv e-prints, page arXiv:2009.05191, September 2020.
  32. A flat torus theorem for convex co-compact actions of projective linear groups. J. Lond. Math. Soc. (2), 103(2):470–489, 2021.
  33. The structure of relatively hyperbolic groups in convex real projective geometry. arXiv e-prints, page arXiv:2203.16596, March 2022.
  34. Michael Kapovich. Convex projective structures on Gromov-Thurston manifolds. Geom. Topol., 11:1777–1830, 2007.
  35. Relativizing characterizations of Anosov subgroups, I. arXiv e-prints, page arXiv:1807.00160, June 2018.
  36. Anosov subgroups: dynamical and geometric characterizations. Eur. J. Math., 3(4):808–898, 2017.
  37. Dynamics on flag manifolds: domains of proper discontinuity and cocompactness. Geom. Topol., 22(1):157–234, 2018.
  38. Curvature in Hilbert geometries. Pacific J. Math., 8:119–125, 1958.
  39. François Labourie. Anosov flows, surface groups and curves in projective space. Invent. Math., 165(1):51–114, 2006.
  40. Ludovic Marquis. Around groups in Hilbert geometry. In Handbook of Hilbert geometry, volume 22 of IRMA Lect. Math. Theor. Phys., pages 207–261. Eur. Math. Soc., Zürich, 2014.
  41. Dennis Sullivan. The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math., (50):171–202, 1979.
  42. Dennis Sullivan. Quasiconformal homeomorphisms and dynamics. II. Structural stability implies hyperbolicity for Kleinian groups. Acta Math., 155(3-4):243–260, 1985.
  43. Pekka Tukia. Conical limit points and uniform convergence groups. J. Reine Angew. Math., 501:71–98, 1998.
  44. È. B. Vinberg. Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR Ser. Mat., 35:1072–1112, 1971.
  45. Theodore Weisman. An extended definition of Anosov representation for relatively hyperbolic groups. Preprint, arXiv:2205.07183, 2022. [math.GR].
  46. Asli Yaman. A topological characterisation of relatively hyperbolic groups. J. Reine Angew. Math., 566:41–89, 2004.
  47. Feng Zhu. Relatively dominated representations. Ann. Inst. Fourier (Grenoble), 71(5):2169–2235, 2021.
  48. Andrew Zimmer. A higher rank rigidity theorem for convex real projective manifolds. arXiv e-prints, page arXiv:2001.05584, January 2020.
  49. Andrew Zimmer. Projective Anosov representations, convex cocompact actions, and rigidity. J. Differential Geom., 119(3):513–586, 2021.
  50. Relatively Anosov representations via flows I: theory. arXiv e-prints, page arXiv:2207.14737, July 2022.
Citations (7)

Summary

We haven't generated a summary for this paper yet.