Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Poisson problem for the fractional Hardy operator: Distributional identities and singular solutions (2009.10957v1)

Published 23 Sep 2020 in math.AP

Abstract: The purpose of this paper is to study and classify singular solutions of the Poisson problem $$ %\begin{equation}\label{eq 0.1} \left { \begin{aligned} {\mathcal L}s_\mu u = f \quad\ {\rm in}\ \, \Omega\setminus {0},\ u =0 \quad\ {\rm in}\ \, {\mathbb R}N \setminus \Omega\ %\ %\liminf_{x \to 0}:|u(x)| /\Phi_\mu(x) = k. \end{aligned} \right. $$ for the fractional Hardy operator ${\mathcal L}_\mus u= (-\Delta)s u +\frac{\mu}{|x|{2s}}u$ in a bounded domain $\Omega \subset {\mathbb R}N$ ($N \ge 2$) containing the origin. Here $(-\Delta)s$, $s\in(0,1)$, is the fractional Laplacian of order $2s$, and $\mu \ge \mu_0$, where $\mu_0 = -2{2s}\frac{\Gamma2(\frac{N+2s}4)}{\Gamma2(\frac{N-2s}{4})}<0$ is the best constant in the fractional Hardy inequality. The analysis requires a thorough study of fundamental solutions and associated distributional identities. Special attention will be given to the critical case $\mu= \mu_0$ which requires more subtle estimates than the case $\mu>\mu_0$.

Summary

We haven't generated a summary for this paper yet.