Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The $\ell$-modular representation of reductive groups over finite local rings of length two (2009.10889v1)

Published 23 Sep 2020 in math.RT

Abstract: Let $\mathcal{O}_2$ and $\mathcal{O}'_2$ be two distinct finite local rings of length two with residue field of characteristic $p$. Let $\mathbb{G}(\mathcal{O}_2)$ and $\mathbb{G}(\mathcal{O}'_2)$, be the group of points of any reductive group scheme $\mathbb{G}$ over $\mathbb{Z}$ such that $p$ is very good for $\mathbb{G} \times \mathbb{F}_q$. We prove that there exists an isomorphism of group algebra $K[\mathbb{G}(\mathcal{O}_2)] \cong K[\mathbb{G}(\mathcal{O}'_2)]$, where $K$ is a sufficiently large field of characteristic different from $p$.

Summary

We haven't generated a summary for this paper yet.