Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ThingML+ Augmenting Model-Driven Software Engineering for the Internet of Things with Machine Learning (2009.10633v1)

Published 22 Sep 2020 in cs.SE and cs.LG

Abstract: In this paper, we present the current position of the research project ML-Quadrat, which aims to extend the methodology, modeling language and tool support of ThingML - an open source modeling tool for IoT/CPS - to address Machine Learning needs for the IoT applications. Currently, ThingML offers a modeling language and tool support for modeling the components of the system, their communication interfaces as well as their behaviors. The latter is done through state machines. However, we argue that in many cases IoT/CPS services involve system components and physical processes, whose behaviors are not well understood in order to be modeled using state machines. Hence, quite often a data-driven approach that enables inference based on the observed data, e.g., using Machine Learning is preferred. To this aim, ML-Quadrat integrates the necessary Machine Learning concepts into ThingML both on the modeling level (syntax and semantics of the modeling language) and on the code generators level. We plan to support two target platforms for code generation regarding Stream Processing and Complex Event Processing, namely Apache SAMOA and Apama.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Armin Moin (21 papers)
  2. Stephan Rössler (2 papers)
  3. Stephan Günnemann (169 papers)
Citations (16)