Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inter-database validation of a deep learning approach for automatic sleep scoring (2009.10365v1)

Published 22 Sep 2020 in cs.LG, cs.PF, eess.SP, and stat.ML

Abstract: In this work we describe a new deep learning approach for automatic sleep staging, and carry out its validation by addressing its generalization capabilities on a wide range of sleep staging databases. Prediction capabilities are evaluated in the context of independent local and external generalization scenarios. Effectively, by comparing both procedures it is possible to better extrapolate the expected performance of the method on the general reference task of sleep staging, regardless of data from a specific database. In addition, we examine the suitability of a novel approach based on the use of an ensemble of individual local models and evaluate its impact on the resulting inter-database generalization performance. Validation results show good general performance, as compared to the expected levels of human expert agreement, as well as state-of-the-art automatic sleep staging approaches

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (36)

Summary

We haven't generated a summary for this paper yet.