Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction in the Calderón problem on conformally transversally anisotropic manifolds (2009.10280v2)

Published 22 Sep 2020 in math.AP, math-ph, and math.MP

Abstract: We show that a continuous potential $q$ can be constructively determined from the knowledge of the Dirichlet-to-Neumann map for the Schr\"odinger operator $-\Delta_g+q$ on a conformally transversally anisotropic manifold of dimension $\geq 3$, provided that the geodesic ray transform on the transversal manifold is constructively invertible. This is a constructive counterpart of the uniqueness result of Dos Santos Ferreira-Kurylev-Lassas-Salo. A crucial role in our reconstruction procedure is played by a constructive determination of the boundary traces of suitable complex geometric optics solutions based on Gaussian beams quasimodes concentrated along non-tangential geodesics on the transversal manifold, which enjoy uniqueness properties. This is achieved by applying the simplified version of the approach of Nachman-Street to our setting. We also identify the main space introduced by Nachman-Street with a standard Sobolev space on the boundary of the manifold. Another ingredient in the proof of our result is a reconstruction formula for the boundary trace of a continuous potential from the knowledge of the Dirichlet-to-Neumann map.

Summary

We haven't generated a summary for this paper yet.