Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parity-time symmetric systems with memory (2009.10211v1)

Published 21 Sep 2020 in quant-ph and nlin.CD

Abstract: Classical open systems with balanced gain and loss, i.e. parity-time ($\mathcal{PT}$) symmetric systems, have attracted tremendous attention over the past decade. Their exotic properties arise from exceptional point (EP) degeneracies of non-Hermitian Hamiltonians that govern their dynamics. In recent years, increasingly sophisticated models of $\mathcal{PT}$-symmetric systems with time-periodic (Floquet) driving, time-periodic gain and loss, and time-delayed coupling have been investigated, and such systems have been realized across numerous platforms comprising optics, acoustics, mechanical oscillators, optomechanics, and electrical circuits. Here, we introduce a $\mathcal{PT}$-symmetric (balanced gain and loss) system with memory, and investigate its dynamics analytically and numerically. Our model consists of two coupled $LC$ oscillators with positive and negative resistance, respectively. We introduce memory by replacing either the resistor with a memristor, or the coupling inductor with a meminductor, and investigate the circuit energy dynamics as characterized by $\mathcal{PT}$-symmetric or $\mathcal{PT}$-symmetry broken phases. Due to the resulting nonlinearity, we find that energy dynamics depend on the sign and strength of initial voltages and currents, as well as the distribution of initial circuit energy across its different components. Surprisingly, at strong inputs, the system exhibits self-organized Floquet dynamics, including $\mathcal{PT}$-symmetry broken phase at vanishingly small dissipation strength. Our results indicate that $\mathcal{PT}$-symmetric systems with memory show a rich landscape.

Summary

We haven't generated a summary for this paper yet.