Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmentation and Defect Classification of the Power Line Insulators: A Deep Learning-based Approach (2009.10163v2)

Published 21 Sep 2020 in cs.CV

Abstract: Power transmission networks physically connect the power generators to the electric consumers. Such systems extend over hundreds of kilometers. There are many components in the transmission infrastructure that require a proper inspection to guarantee flawless performance and reliable delivery, which, if done manually, can be very costly and time consuming. One essential component is the insulator. Its failure can cause an interruption of the entire transmission line or a widespread power failure. Automated fault detection could significantly decrease inspection time and related costs. Recently, several works have been proposed based on convolutional neural networks, which address the issue mentioned above. However, existing studies focus on a specific type of insulator faults. Thus, in this study, we introduce a two-stage model that segments insulators from their background to then classify their states based on four different categories, namely: healthy, broken, burned/corroded and missing cap. The test results show that the proposed approach can realize the effective segmentation of insulators and achieve high accuracy in detecting several types of faults.

Citations (7)

Summary

We haven't generated a summary for this paper yet.