Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation (2009.10002v1)

Published 21 Sep 2020 in cs.IR and cs.AI

Abstract: The task of session-based recommendation is to predict user actions based on anonymous sessions. Recent research mainly models the target session as a sequence or a graph to capture item transitions within it, ignoring complex transitions between items in different sessions that have been generated by other users. These item transitions include potential collaborative information and reflect similar behavior patterns, which we assume may help with the recommendation for the target session. In this paper, we propose a novel method, namely Dual-channel Graph Transition Network (DGTN), to model item transitions within not only the target session but also the neighbor sessions. Specifically, we integrate the target session and its neighbor (similar) sessions into a single graph. Then the transition signals are explicitly injected into the embedding by channel-aware propagation. Experiments on real-world datasets demonstrate that DGTN outperforms other state-of-the-art methods. Further analysis verifies the rationality of dual-channel item transition modeling, suggesting a potential future direction for session-based recommendation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yujia Zheng (34 papers)
  2. Siyi Liu (21 papers)
  3. Zekun Li (73 papers)
  4. Shu Wu (109 papers)
Citations (35)

Summary

We haven't generated a summary for this paper yet.