Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering COVID-19 Lung Scans (2009.09899v2)

Published 5 Sep 2020 in cs.CV, cs.LG, eess.IV, and stat.ML

Abstract: With the ongoing COVID-19 pandemic, understanding the characteristics of the virus has become an important and challenging task in the scientific community. While tests do exist for COVID-19, the goal of our research is to explore other methods of identifying infected individuals. Our group applied unsupervised clustering techniques to explore a dataset of lungscans of COVID-19 infected, Viral Pneumonia infected, and healthy individuals. This is an important area to explore as COVID-19 is a novel disease that is currently being studied in detail. Our methodology explores the potential that unsupervised clustering algorithms have to reveal important hidden differences between COVID-19 and other respiratory illnesses. Our experiments use: Principal Component Analysis (PCA), K-Means++ (KM++) and the recently developed Robust Continuous Clustering algorithm (RCC). We evaluate the performance of KM++ and RCC in clustering COVID-19 lung scans using the Adjusted Mutual Information (AMI) score.

Citations (2)

Summary

We haven't generated a summary for this paper yet.