Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Adversarial yet Inconspicuous Patches with a Single Image (2009.09774v2)

Published 21 Sep 2020 in cs.CV and cs.AI

Abstract: Deep neural networks have been shown vulnerable toadversarial patches, where exotic patterns can resultin models wrong prediction. Nevertheless, existing ap-proaches to adversarial patch generation hardly con-sider the contextual consistency between patches andthe image background, causing such patches to be eas-ily detected and adversarial attacks to fail. On the otherhand, these methods require a large amount of data fortraining, which is computationally expensive. To over-come these challenges, we propose an approach to gen-erate adversarial yet inconspicuous patches with onesingle image. In our approach, adversarial patches areproduced in a coarse-to-fine way with multiple scalesof generators and discriminators. Contextual informa-tion is encoded during the Min-Max training to makepatches consistent with surroundings. The selection ofpatch location is based on the perceptual sensitivity ofvictim models. Through extensive experiments, our ap-proach shows strong attacking ability in both the white-box and black-box setting. Experiments on saliency de-tection and user evaluation indicate that our adversar-ial patches can evade human observations, demonstratethe inconspicuousness of our approach. Lastly, we showthat our approach preserves the attack ability in thephysical world.

Citations (6)

Summary

We haven't generated a summary for this paper yet.