Khavinson problem for hyperbolic harmonic mappings in Hardy space (2009.09548v1)
Abstract: \begin{abstract} In this paper, we partly solve the generalized Khavinson conjecture in the setting of hyperbolic harmonic mappings in Hardy space. Assume that $u=\mathcal{P}{\Omega}[\phi]$ and $\phi\in L{p}(\partial\Omega, \mathbb{R})$, where $p\in[1,\infty]$, $\mathcal{P}{\Omega}[\phi]$ denotes the Poisson integral of $\phi$ with respect to the hyperbolic Laplacian operator $\Delta_{h}$ in $\Omega$, and $\Omega$ denotes the unit ball $\mathbb{B}{n}$ or the half-space $\mathbb{H}{n}$. For any $x\in \Omega$ and $l\in \mathbb{S}{n-1}$, let $\mathbf{C}{\Omega,q}(x)$ and $\mathbf{C}{\Omega,q}(x;l)$ denote the optimal numbers for the gradient estimate $$ |\nabla u(x)|\leq \mathbf{C}{\Omega,q}(x)|\phi|{ L{p}(\partial\Omega, \mathbb{R})} $$ and gradient estimate in the direction $l$ $$|\langle\nabla u(x),l\rangle|\leq \mathbf{C}{\Omega,q}(x;l)|\phi|{ L{p}(\partial\Omega, \mathbb{R})}, $$ respectively. Here $q$ is the conjugate of $p$. If $q=\infty$ or $q\in[\frac{2K_{0}-1}{n-1}+1,\frac{2K_{0}}{n-1}+1]\cap [1,\infty)$ with $K_{0}\in\mathbb{N}={0,1,2,\ldots}$, then $\mathbf{C}{\mathbb{B}{n},q}(x)=\mathbf{C}{\mathbb{B}{n},q}(x;\pm\frac{x}{|x|})$ for any $x\in\mathbb{B}{n}\backslash{0}$, and $\mathbf{C}{\mathbb{H}{n},q}(x)=\mathbf{C}{\mathbb{H}{n},q}(x;\pm e_{n})$ for any $x\in \mathbb{H}{n}$, where $e_{n}=(0,\ldots,0,1)\in\mathbb{S}{n-1}$. However, if $q\in(1,\frac{n}{n-1})$, then $\mathbf{C}{\mathbb{B}{n},q}(x)=\mathbf{C}{\mathbb{B}{n},q}(x;t_{x})$ for any $x\in\mathbb{B}{n}\backslash{0}$, and $\mathbf{C}{\mathbb{H}{n},q}(x)=\mathbf{C}{\mathbb{H}{n},q}(x;t_{e_{n}})$ for any $x\in \mathbb{H}{n}$. Here $t_{w}$ denotes any unit vector in $\mathbb{R}{n}$ such that $\langle t_{w},w\rangle=0$ for $w\in \mathbb{R}{n}\setminus{0}$. \end{abstract}