Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations (2009.09204v2)

Published 19 Sep 2020 in math.NA and cs.NA

Abstract: We consider residual-based a posteriori error estimators for Galerkin-type discretizations of time-harmonic Maxwell's equations. We focus on configurations where the frequency is high, or close to a resonance frequency, and derive reliability and efficiency estimates. In contrast to previous related works, our estimates are frequency-explicit. In particular, our key contribution is to show that even if the constants appearing in the reliability and efficiency estimates may blow up on coarse meshes, they become independent of the frequency for sufficiently refined meshes. Such results were previously known for the Helmholtz equation describing scalar wave propagation problems and we show that they naturally extend, at the price of many technicalities in the proofs, to Maxwell's equations. Our mathematical analysis is performed in the 3D case, and covers conforming N\'ed\'elec discretizations of the first and second family, as well as first-order (and hybridizable) discontinuous Galerkin schemes. We also present numerical experiments in the 2D case, where Maxwell's equations are discretized with N\'ed\'elec elements of the first family. These illustrating examples perfectly fit our key theoretical findings, and suggest that our estimates are sharp.

Citations (11)

Summary

We haven't generated a summary for this paper yet.