Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple-trait Adaptive Fisher's Method for Genome-wide Association Studies (2009.09002v3)

Published 18 Sep 2020 in stat.ME

Abstract: In genome-wide association studies (GWASs), there is an increasing need for detecting the associations between a genetic variant and multiple traits. In studies of complex diseases, it is common to measure several potentially correlated traits in a single GWAS. Despite the multivariate nature of the studies, single-trait-based methods remain the most widely-adopted analysis procedure, owing to their simplicity for studies with multiple traits as their outcome. However, the association between a genetic variant and a single trait sometimes can be weak, and ignoring the actual correlation among traits may lose power. On the contrary, multiple-trait analysis, a method analyzes a group of traits simultaneously, has been proven to be more powerful by incorporating information from the correlated traits. Although existing methods have been developed for multiple traits, several drawbacks limit their wide application in GWASs. In this paper, we propose a multiple-trait adaptive Fisher's (MTAF) method to test associations between a genetic variant and multiple traits at once, by adaptively aggregating evidence from each trait. The proposed method can accommodate both continuous and binary traits and it has reliable performance under various scenarios. Using a simulation study, we compared our proposed method with several existing methods and demonstrated its competitiveness in terms of type I error control and statistical power. By applying the method to the Study of Addiction: Genetics and Environment (SAGE) dataset, we successfully identified several genes associated with substance dependence.

Summary

We haven't generated a summary for this paper yet.