Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Answers to Two Questions on the DP Color Function (2009.08242v1)

Published 14 Sep 2020 in math.CO

Abstract: DP-coloring is a generalization of list coloring that was introduced in 2015 by Dvo\v{r}\'{a}k and Postle. The chromatic polynomial of a graph is a notion that has been extensively studied since the early 20th century. The chromatic polynomial of graph $G$ is denoted $P(G,m)$, and it is equal to the number of proper $m$-colorings of $G$. In 2019, Kaul and Mudrock introduced an analogue of the chromatic polynomial for DP-coloring; specifically, the DP color function of graph $G$ is denoted $P_{DP}(G,m)$. Two fundamental questions posed by Kaul and Mudrock are: (1) For any graph $G$ with $n$ vertices, is it the case that $P(G,m)-P_{DP}(G,m) = O(m{n-3})$ as $m \rightarrow \infty$? and (2) For every graph $G$, does there exist $p,N \in \mathbb{N}$ such that $P_{DP}(K_p \vee G, m) = P(K_p \vee G, m)$ whenever $m \geq N$? We show that the answer to both these questions is yes. In fact, we show the answer to (2) is yes even if we require $p=1$.

Citations (16)

Summary

We haven't generated a summary for this paper yet.