Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LeadCache: Regret-Optimal Caching in Networks (2009.08228v4)

Published 17 Sep 2020 in cs.IT, cs.LG, cs.NI, cs.PF, and math.IT

Abstract: We consider an online prediction problem in the context of network caching. Assume that multiple users are connected to several caches via a bipartite network. At any time slot, each user may request an arbitrary file chosen from a large catalog. A user's request at a slot is met if the requested file is cached in at least one of the caches connected to the user. Our objective is to predict, prefetch, and optimally distribute the files on the caches at each slot to maximize the total number of cache hits. The problem is non-trivial due to the non-convex and non-smooth nature of the objective function. In this paper, we propose $\texttt{LeadCache}$ - an efficient online caching policy based on the Follow-the-Perturbed-Leader paradigm. We show that $\texttt{LeadCache}$ is regret-optimal up to a factor of $\tilde{O}(n{3/8}),$ where $n$ is the number of users. We design two efficient implementations of the $\texttt{LeadCache}$ policy, one based on Pipage rounding and the other based on Madow's sampling, each of which makes precisely one call to an LP-solver per iteration. Furthermore, with a Strong-Law-type assumption, we show that the total number of file fetches under $\texttt{LeadCache}$ remains almost surely finite over an infinite horizon. Finally, we derive an approximately tight regret lower bound using results from graph coloring. We conclude that the learning-based $\texttt{LeadCache}$ policy decisively outperforms the state-of-the-art caching policies both theoretically and empirically.

Citations (21)

Summary

We haven't generated a summary for this paper yet.