Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-Order Nonemptiness Step by Step (2009.08174v1)

Published 17 Sep 2020 in cs.FL

Abstract: We show a new simple algorithm that checks whether a given higher-order grammar generates a nonempty language of trees. The algorithm amounts to a procedure that transforms a grammar of order n to a grammar of order n-1, preserving nonemptiness, and increasing the size only exponentially. After repeating the procedure n times, we obtain a grammar of order 0, whose nonemptiness can be easily checked. Since the size grows exponentially at each step, the overall complexity is n-EXPTIME, which is known to be optimal. More precisely, the transformation (and hence the whole algorithm) is linear in the size of the grammar, assuming that the arity of employed nonterminals is bounded by a constant. The same algorithm allows to check whether an infinite tree generated by a higher-order recursion scheme is accepted by an alternating safety (or reachability) automaton, because this question can be reduced to the nonemptiness problem by taking a product of the recursion scheme with the automaton. A proof of correctness of the algorithm is formalised in the proof assistant Coq. Our transformation is motivated by a similar transformation of Asada and Kobayashi (2020) changing a word grammar of order n to a tree grammar of order n-1. The step-by-step approach can be opposed to previous algorithms solving the nonemptiness problem "in one step", being compulsorily more complicated.

Citations (2)

Summary

We haven't generated a summary for this paper yet.